An Implicit Algorithm for Capturing Sharp Fluid Interfaces in the Volume of Fluid Advection Method

نویسندگان

  • Peter W. Hogg
  • Xiao-Jun Gu
  • David R. Emerson
چکیده

The Volume of Fluid (VOF) method is one of the most effective methods employed in the simulation of two fluid flows with interfaces where density and viscosity change abruptly. These interfaces are represented implicitly by the values of a colour function which is a volume fraction of one of the fluids. The advantage of the method is its ability to deal with arbitrarily shaped interfaces and to cope with large deformations, as well as interface rupture and coalescence in a natural way. In comparison to a level set method, the mass is rigorously conserved in VOF, provided the discretisation is conservative, but one of the main difficulties is advecting the interface without diffusing, dispersing, or wrinkling it. This can either be performed algebraically, in schemes such as CICSAM or geometrically, in schemes such as PLIC. In the present paper, an algebraic advection scheme for the interface is presented, which is designed for the implicit time advancing algorithm. Analogous to CICSAM, the new scheme switches smoothly between ULTIMATE-QUICK and the upper bound of the universal limiter, depending on the angle between the interface and the flow direction. Four cases are tested with the present scheme: (i) solid body rotation; (ii) circle in a shear flow; (iii) dam-break and (iv) Rayleigh-Taylor instability. In the first two test cases, prescribed velocity fields are used, thereby allowing the effectiveness of the scheme in advecting the colour function only to be assessed. The scheme is found to outperform six other methods used for comparison in both studies. In solid body rotation simulations a fractional error of 0.19% is calculated in comparison to the next best recorded error of 1.1%. Similarly, in the longest shear flow simulation, a fractional error of 1.2% is calculated in comparison to the next best recorded error of 3.9%. In the final two test cases the advection equation for the colour function is coupled to the Navier-Stokes equations. In dam-break simulations it is found that the resulting solution effectively captures the trends displayed in experimental data for the advancing water front and the residual height of the liquid column against time. Qualitative results obtained for the Rayleigh-Taylor instability modelling in test case four are found to compare favourably to previous numerical simulations of the same phenomenon. Peter W. Hogg, Xiao-Jun Gu and David R. Emerson. 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface-capturing Finite-element Technique (icfet) for Transient Two-phase Flow

A numerical model is presented for computation of unsteady two-fluid interfaces in nonlinear porous media flow. The nonlinear Forchheimer equation is included in the Navier-Stokes equations for porous media flow. The model is based on capturing the interface on a fixed mesh domain. The zero level set of a pseudo-concentration function, which defines the interface between the two fluids, is gove...

متن کامل

An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids

We present an adaptive coupled level-set/volume-of-fluid (ACLSVOF) method for interfacial flow simulations on unstructured triangular grids. At each time step, we evolve both the level set function and the volume fraction. The level set function is evolved by solving the level set advection equation using a discontinuous Galerkin finite element method. The volume fraction advection is performed...

متن کامل

Effects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection

In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...

متن کامل

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006